Manipulation of Weighted Voting Games and the Effect of Quota
نویسندگان
چکیده
The Shapley-Shubik, Banzhaf, and Deegan-Packel indices are three prominent power indices for measuring voters’ power in weighted voting games. We consider two methods of manipulating weighted voting games, called annexation and merging. These manipulations allow either an agent, called an annexer to take over the voting weights of some other agents, or the coming together of some agents to form a bloc of manipulators to have more power over the outcomes of the games. We evaluate the extent of susceptibility to these forms of manipulation and the effect of the quota of a game on these manipulation for the three indices. Experiments on weighted voting games suggest that the three indices are highly susceptible to annexation while they are less susceptible to merging. In both annexation and merging, the Shapley-Shubik index is the most susceptible to manipulation among the indices. Further experiments on the effect of quotas of weighted voting games suggest the existence of an inverse relationship between the susceptibility of the indices to manipulation and the quotas for both annexation and merging. Thus, weighted voting games with large quota values closer to the total weight of agents in the games may be less vulnerable to annexation and merging than those with corresponding smaller quota values. keywords: Agents, Weighted voting games, Manipulation, Annexation, Merging, Power indices.
منابع مشابه
The Shapley Value as a Function of the Quota in Weighted Voting Games
In weighted voting games, each agent has a weight, and a coalition of players is deemed to be winning if its weight meets or exceeds the given quota. An agent’s power in such games is usually measured by her Shapley value, which depends both on the agent’s weight and the quota. [Zuckerman et al., 2008] show that one can alter a player’s power significantly by modifying the quota, and investigat...
متن کاملOn minimum sum representations for weighted voting games
A proposal in a weighted voting game is accepted if the sum of the (non-negative) weights of the “yea” voters is at least as large as a given quota. Several authors have considered representations of weighted voting games with minimum sum, where the weights and the quota are restricted to be integers. In [Freixas and Molinero(2009)] the authors have classified all weighted voting games without ...
متن کاملThe cost of principles: analyzing power in compatibility weighted voting games
We propose Compatibility Weighted Voting Games, a variant of Weighted Voting Games in which some pairs of agents are compatible and some are not. In a Weighted Voting Game each agent has a weight, and a set of agents can form a winning coalition if the sum of their weights is at least a given quota. Whereas the original Weighted Voting Game model assumes that all agents are compatible, we consi...
متن کاملCombinatorial and computational aspects of multiple weighted voting games
Weighted voting games are ubiquitous mathematical models which are used in economics, political science, neuroscience, threshold logic, reliability theory and distributed systems. They model situations where agents with variable voting weight vote in favour of or against a decision. A coalition of agents is winning if and only if the sum of weights of the coalition exceeds or equals a specified...
متن کاملL S Penrose's limit theorem: Tests by simulation
L S Penrose’s Limit Theorem – which is implicit in Penrose [7, p. 72] and for which he gave no rigorous proof – says that, in simple weighted voting games, if the number of voters increases indefinitely and the relative quota is pegged, then – under certain conditions – the ratio between the voting powers of any two voters converges to the ratio between their weights. Lindner and Machover [4] p...
متن کامل